Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China
Dayang Wang,
Dagang Wang (),
Chongxun Mo and
Yi Du
Additional contact information
Dayang Wang: Sun Yat-sen University
Dagang Wang: Sun Yat-sen University
Chongxun Mo: Guangxi University
Yi Du: Sun Yat-sen University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 2, No 9, 1585-1608
Abstract:
Abstract The risk analysis of reservoir regulation in the flood season is crucial and provides the valuable information for reservoir flood control, safety operation, and decision making, especially under climate change. The purpose of this study is to propose a framework for reasonably estimating the variation of reservoir regulation risk including the dam extreme risk and the overtopping risk during the flood season under climate change. The framework consists of an integrated diagnostic system for detecting the climate abrupt change time, a copula function-based bivariate statistical approach for modeling the dependence between the flood peak and flood volume, a Monte Carlo simulation for generating numerous random flood peak–volume pairs, and a risk calculation model for routing the design flood hydrographs to obtain the frequency curve of the maximum water level reached in front of dam and evaluating the reservoir regulation risk. The methodology was implemented in the Chengbihe reservoir in south China by using the 55-year (1963–2017) hydrometeorological data, including temperature, evaporation, precipitation, and streamflow, in the flood season. Results show that the hydrometeorological series during the flood season changed abruptly in 1992 and the entire data can be divided into two periods (1963–1992 and 1993–2017). The dam extreme risk and overtopping risk during the two periods are assessed, respectively, and a comparison analysis is made based on different flood limit water-level schemes (185.00–188.50 m). It demonstrates that both the dam extreme risk and the dam overtopping risk increase under the influence of climate change. The dam extreme risk increases by 22.91–95.03%, while the climate change-induced increase in the dam overtopping risk is between 38.62 and 123.59%, which indicates that the dam overtopping risk is more sensitive to climate change than the dam extreme risk. The risk evaluations in the study are of great significance in the safety operation and risk management of reservoirs under future climate change.
Keywords: Risk analysis; Climate change; Design flood hydrographs; Copula function; Dam extreme risk; Dam overtopping risk (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04746-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04746-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04746-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().