Risk-based resilience concentration assessment of community to seismic hazards
Tingting Ji,
Hsi-Hsien Wei (),
Igal M. Shohet and
Feng Xiong
Additional contact information
Tingting Ji: The Hong Kong Polytechnic University
Hsi-Hsien Wei: The Hong Kong Polytechnic University
Igal M. Shohet: Ben-Gurion University
Feng Xiong: Sichuan University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 2, No 15, 1751 pages
Abstract:
Abstract Risk and resilience assessments have been both widely, but separately, used as tools for guiding policymakers to formulate disaster-risk reduction policies. On the one hand, risk assessment is utilized to estimate the risk associated with disasters in terms of operational metrics such as monetary or casualties’ loss; on the other hand, most resilience analysis assesses and represent community resilience as an index, without a specific unit metric, to gauge levels of disparity in community’s post-disaster recovery capability among the areas of interest. Although disaster-risk reduction policies should be best informed by both risk and resilience assessments, an informative integrated assessment approach accounting for both seems to be lacked in current research, insofar as the difficulty in properly integrating their distinct measurement metrics. This paper commences with a literature review of risk assessment and community resilience. It then proposes an integrated framework that can comprehensively assess both seismic risk and resilience, by taking into account the casualties and economic losses associated with earthquakes resulted from a risk assessment, and the infrastructure-system resilience and community socioeconomic–demographic resilience resulted from a resilience assessment. More specifically, an integrated tool, risk-based resilience-concentration curve, is proposed for assessing the inequality of given types of risk in the community’s infrastructure-system resilience, and socioeconomic–demographic resilience, respectively. A case study is presented using the data from a city in Israel: the first phase of the case study focused on the concentration of casualties’ risk in community’s infrastructure-system resilience, and the second on the concentration of economic risk in community’s socioeconomic–demographic resilience. The results show that unevenly distributed risk and community resilience can cause inequality of risk in resilience capacity in certain administrative tracts of the city. Based on these findings, the paper recommends a range of risk-reduction strategies for different administrative tracts based on their risk-based resilience concentration curves.
Keywords: Community resilience; Natural hazards; Resilience index; Seismic risk (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04753-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04753-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04753-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().