High-fidelity broadband prediction of regional seismic response: a hybrid coupling of physics-based synthetic simulation and empirical Green functions
David Castro-Cruz (),
Filippo Gatti and
Fernando Lopez-Caballero
Additional contact information
David Castro-Cruz: Université Paris Saclay, CentraleSupélec, CNRS
Filippo Gatti: Université Paris Saclay, CentraleSupélec, CNRS
Fernando Lopez-Caballero: Université Paris Saclay, CentraleSupélec, CNRS
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 2, No 27, 1997-2031
Abstract:
Abstract The prediction of the seismic response of critical structures is highly sensitive to many aspects, among which the earthquake source and the geological setting are prominent. The related uncertainty issues must be taken into account in seismic risk mitigation studies, for example through the evaluation of several realizations of a future earthquake scenario. This aspect is crucial when addressing vulnerability studies at a regional scale. When opting for physical-based numerical simulations (PBS), however, the computational burden increases along with the expected degree of fidelity, making it difficult to evaluate more than a few dozens of alternatives. To cope with this disadvantage, in this work an alternative method is proposed, which exploits a rather low number of synthetic earthquake simulations and combines them with the empirical Green function (EGF) method, to finally generate thousands of alternative yet realistic seismic response of the site of interest. This hybrid strong motion predictions benefit of both (i) PBS high fidelity and (ii) data assimilation of strong ground motion records in the seismic area of interest, via EGF method, producing broadband synthetics at a relative cheap computational price. The power of the hybrid method is tested on a real case scenario, embodied by the ground-shaking prediction at the nuclear site of Cadarache, in the surroundings of the fault of Middle Durance, in South-Eastern France. Thousands of broadband (0–15 Hz) hybrid synthetic seismic response are generated, associated with different fault parameters (EGF method) and based upon a few key physics-based simulations, accurate up to 5 Hz.
Keywords: Earthquake simulation; Seismic hazard; Empirical Green function; Spectral element method; SEM3D; Hybrid method (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04766-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04766-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04766-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().