Three-dimensional simulation of regional urban waterlogging based on high-precision DEM model
Zipeng Chen,
Kun Li (),
Jianhua Du,
Yi Chen,
Ronggang Liu and
Yi Wang
Additional contact information
Zipeng Chen: Zhongnan University of Economics and Law
Kun Li: Zhongnan University of Economics and Law
Jianhua Du: Zhongnan University of Economics and Law
Yi Chen: Zhongnan University of Economics and Law
Ronggang Liu: Zhongnan University of Economics and Law
Yi Wang: Zhongnan University of Economics and Law
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 3, No 14, 2653-2677
Abstract:
Abstract With the frequent occurrence of extreme rainfall and the change of urban surface caused by human activities, urban waterlogging has gradually become a common disaster in many cities. In this paper, in order to deal with the urban waterlogging disasters, three-dimensional (3D) simulation of regional urban waterlogging was established based on high-precision digital elevation model (DEM). The project takes Zhongnan University of Economics and Law as the research area to setup the simulation. Firstly, the sub-catchment areas are divided by the watershed extraction method. Secondly, the research area is gridded to calculate the scope and volume of waterlogging area. Finally, combined with the rainstorm intensity formula, the statistics of local area underlying surface, and Soil Conservation Service (SCS) model, the urban waterlogging disaster model is established. Then, the waterlogging disaster calculation under different return period rainfall situations is realized and based on 3D technology, the 3D scene of research area and 3D simulation of waterlogging are shown by using CityEngine and Cesium. The data verification of the model is based on the rainfall data, and the urban waterlogging disaster results in Wuhan in 2016. The simulation results are basically consistent with the waterlogging disaster in 2016. And the research shows that the sub-catchment area divided by the watershed extraction method can take into account the blocking effect of terrain on surface runoff, and the results are consistent with the actual terrain. Waterlogging simulation in a small area can accurately locate the affected areas and buildings, and 3D visualization technology can be used as an effective means of transmitting disaster information to provide basis for emergency decision-making. Only the geographical data of the local area and the rainfall data are needed for the method for simulation calculation, which makes it easily to transplant to other areas and can provide an important idea and method for the flood prevention and control in flood season for reservoir, tailings pond, factories and so on.
Keywords: Urban waterlogging; High-precision DEM model; Three-dimensional GIS; Disaster simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04793-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04793-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04793-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().