The analysis of using satellite soil moisture observations for flood detection, evaluating over the Thailand’s Great Flood of 2011
Natthachet Tangdamrongsub (),
Chalita Forgotson,
Chandana Gangodagamage and
Joshua Forgotson
Additional contact information
Natthachet Tangdamrongsub: University of Maryland
Chalita Forgotson: NASA Goddard Space Flight Center
Chandana Gangodagamage: University of Maryland
Joshua Forgotson: ICF
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 3, No 23, 2879-2904
Abstract:
Abstract A flood monitoring and warning system provides critical information that can protect property and save lives. A basin-scale flood monitoring system requires an effective observation platform that offers extensive ground coverage of flood conditions, low latency, and high spatiotemporal resolution. While satellite imagery offers substantial spatial flood extent in detail due to its high spatial resolution, the coarse temporal resolution and cloud obstruction limit its near real-time application. Daily soil moisture data derived from satellite sensors at a scale of a few km can be used to monitor extreme wet surface conditions arising in flood occurrences. This study analyzes the flood detection capabilities of several sources of soil moisture information, including the Soil Moisture and Ocean Salinity mission (SMOS), the Advanced Microwave Scanning Radiometer on EOS, the Advanced SCATterometer on MetOp, the Global Land Data Assimilation System, and the WaterGAP Global Hydrology Model. In addition to soil moisture, the analysis includes measurements of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation measurements from the Tropical Rainfall Measuring Mission, and terrestrial water storage estimates from the Gravity Recovery And Climate Experiment as proxies for flood inundations. The analysis was conducted over the Chao Phraya River Basin in Thailand, where the Great Flood of 2011 led to one of the most significant economic losses in the country's history. Satellite-derived soil moisture exhibits a stronger correlation with the flood inundations than the precipitation, model-derived soil moisture, and terrestrial water storage data. SMOS soil moisture observation agrees best with the MODIS-derived flood extent/occurrence, both in terms of spatial distribution and timing, and providing approximated flood lead-time of one week or longer. A neural network constructed from SMOS and MODIS data is used to predict flood intensity/occurrence (given soil moisture input) with a predicted time window from eight days to thirty-two days. The short-term prediction (e.g., eight days) achieves the highest accuracy with an averaged recovery rate of approximately 60% (correlation coefficient). This study's results suggest a potential application of satellite soil moisture data in assisting flood monitoring and warning systems.
Keywords: Satellite soil moisture; SMOS; MODIS; Flood prediction; Thailand’s great flood (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04804-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04804-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04804-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().