Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation
Mayara Maria Arruda Gomes (),
Lívia Fragoso Melo Verçosa () and
José Almir Cirilo ()
Additional contact information
Mayara Maria Arruda Gomes: Federal University of Pernambuco
Lívia Fragoso Melo Verçosa: Federal University of Pernambuco
José Almir Cirilo: Federal University of Pernambuco
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 3, No 34, 3157 pages
Abstract:
Abstract Floods are the most frequent natural disaster and pose a very challenging threat to many cities worldwide. Understanding the flood dynamic is essential for developing strategies to reduce its risk and damages, thus ensuring the cities’ protection. This study evaluated the Capibaribe River basin's hydrological response to extreme events and its impact on the city of Recife, in the northeast of Brazil. The CAWM IV and HEC-HMS models were coupled with a high-resolution 2D HEC-RAS model to simulate the flood events of 1975 and 2011 in Recife. CAWM IV is a newly developed hydrological model that presented very promising results for the data-scarce watersheds of the Brazilian semiarid region. For the 2D hydrodynamic modeling, 1-m LiDAR DEM was used. A reservoir operation model was also applied to assess the effect of the basin's main reservoirs on the water system upstream from Recife. Lastly, the 2011 flood event was simulated under the scenario of an absence of this reservoir system. The strategy used to address flooding simulation in an urban area proved to be satisfactory. Of the events simulated with CAWM IV, 60% have at least a satisfactory adjustment with NSEsqrtQ coefficients greater than 0.36 in 95% of cases. With the reservoir operation model, it was possible to calculate the peak flow of the events of 1975 and 2011 as being 2574 and 731 m3/s, respectively. The 2D HEC-RAS model presented a measure of fit of approximately 0.7. The study showed that the reservoir system was responsible for reducing flood extent by 70.3% in the 2011 event, but even with this system, this event still caused a flood covering an area of 6.01 km2. The results indicate that although the reservoirs prevent severe flooding in the lower course of the Capibaribe River, Recife is still vulnerable to flooding.
Keywords: Flooding; LiDAR; 2D hydrodynamic models; Flood control; CAWM IV; HEC-RAS (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04817-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04817-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04817-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().