Landslide detection using visualization techniques for deep convolutional neural network models
Kemal Hacıefendioğlu (),
Gökhan Demir () and
Hasan Basri Başağa ()
Additional contact information
Kemal Hacıefendioğlu: Karadeniz Technical University
Gökhan Demir: Ondokuz Mayıs University
Hasan Basri Başağa: Karadeniz Technical University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 109, issue 1, No 15, 329-350
Abstract:
Abstract Landslides occur when masses of rock, earth, and other debris move down a slope. The slope of an area is directly responsible for the magnitude of the landslide. Being able to identify regional locations more likely to be impacted by landslides is essential if interventions to prevent loss of life and liberty are to be implemented. To further this objective, studies have been carried out using deep learning methods to assess the likelihood of landslides in a localized area. This study seeks to illuminate the reliability in using the deep learning method to effectively detect landslide zones for the purpose of enacting proactive interventions. Pre-trained models of Resnet-50, VGG-19, Inception-V3, and Xception, all of which are established deep learning approaches, were used to automatically detect regional landslides and then compare results. In addition, Grad-CAM, Grad-CAM + + , and Score-CAM visualization techniques were considered depending on the deep learning methods used to accurately predict the location of landslides. The present research focuses on the landslides that took place in the Gündoğdu area of Rize, a city on the Black Sea cost of Turkey, from August 26 to 27, 2010, where unfortunately a significant number of individuals lost their lives. As a large number of landslide scene images are needed in order to facilitate a learning model’s deep learning, images from the area were obtained by aircraft and then organized as a dataset. Non-landslide scenes were added as a separate class in the training dataset to estimate the landslide regions more accurately. In total, 80% of the data will be used for training the model, while 20% will be used for testing the model that is built out of it. The experimental results were evaluated with the receiver operating curves and f1-score applicable to landslide detection characteristics. Obtained results show that both Resnet-50 and VGG-19 had a success rate of over 90%. Results also effectively demonstrate how the best visualization techniques for localizations are Grad-CAM and Score-CAM.
Keywords: Deep learning method; Convolutional neural networks; VGG-19; Resnet-50; Inception-V3; GradCAM; ScoreCAM; Landslide (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04838-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04838-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04838-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().