Life-cycle cost and sustainability analysis of light-frame wood residential communities exposed to tornados
Pramodit Adhikari,
Hussam N. Mahmoud () and
Bruce R. Ellingwood
Additional contact information
Pramodit Adhikari: Colorado State University
Hussam N. Mahmoud: Colorado State University
Bruce R. Ellingwood: Colorado State University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 109, issue 1, No 23, 523-544
Abstract:
Abstract Tornadoes pose a significant threat to residential communities, causing enormous physical damage and losses to their social fabric. The dominant type of single-family residential buildings in the USA is light-frame wood construction, which is especially susceptible to tornado effects. Previous studies considering resilience of light-frame wood buildings have focused primarily on assessing damage, developing damage functions, and exploring different repair methods. Studies related to sustainability have focused mainly on environmental impacts or carbon usage. Practically all of these studies have been geared to assessment of individual buildings. In this study, we couple resilience and sustainability to evaluate their tradeoffs or alignments at the community level from a life-cycle stance. The life-cycle cost and carbon footprint are reflected in the construction and repair of damages due to the tornado hazard, as well as regular repair and maintenance that occurs during the life of the residence. Uncertainties in the randomness in tornado occurrence, size of the tornado footprint, and variation in wind speed intensities within the tornado footprint, and capacities of the building structure and envelope play a significant role in building performance and are considered. We explore a number of repair strategies that might be adopted at the community level in decision-making and policy formulation for homeowners, home builders and community planners. These strategies provide a framework for integrating minimum cost and carbon footprint objectives in risk-informed decision-making, a topic that appears to be lacking in the literature.
Keywords: Community resilience; Fragility; Life-cycle analysis; Residential buildings; Sustainability; Tornadoes. (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04847-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04847-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04847-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().