Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran
Ahmad Rajabi (),
Saeid Shabanlou,
Fariborz Yosefvand and
Afshin Kiani
Additional contact information
Ahmad Rajabi: Islamic Azad University
Saeid Shabanlou: Islamic Azad University
Fariborz Yosefvand: Islamic Azad University
Afshin Kiani: Islamic Azad University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 109, issue 1, No 37, 901 pages
Abstract:
Abstract Flood has always been a destructive natural hazard during the recent years. Hence, this research aimed to predict the potentiality and probability of flood phenomenon by using the two well-known models, i.e., the MARS algorithm (multivariate adaptive regression splines) and MaxEnt (maximum entropy) method in the Saliantapeh catchment, Golestan province, Iran, covering 4515.47 km2. First, documentary sources report and field surveys were used to provide a flood database map. Then, to prepare the flood spatial potentiality map (FSPM), we select sixteen influential variables as predictors. Furthermore, the relative contributions of predicting factors are estimated using the MaxEnt method. For the analysis of data sensitivity and the uncertainty of the proposed models, different scenarios including the sample size (50%/50%, 80%/20%, and 70%/30%, respectively, for training and validation), and the number of replications (5, 10, and 20) were used. Along with the area under the ROC curve (AUC), the highest accuracy for both models corresponds to the first scenario of sample size (80/20%). Contrarywise, it can be concluded that for this scenario, the MARS technique indicated higher predictive skill (AUC = 98.51%). Regarding the second scenario, which is corresponding to the replicate, the MARS model with 20 replications still has the highest accuracy (94.70%) compared to the other scenarios and the MaxEnt model. The findings of robustness demonstrated that the scenarios with the greatest AUC value have the highest robustness. This work demonstrates that the utilization of the best accurate model with high certainty along with FSPM may be useful to identify and manage the areas that are most susceptible to flood.
Keywords: Maximum entropy; Models uncertainty; ROC curve; Spatial potentiality map; Data sensitivity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04860-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04860-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04860-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().