EconPapers    
Economics at your fingertips  
 

Inelastic displacement demand of RC buildings subjected to earthquakes generated by intermediate-depth Vrancea seismic source

Paul Olteanu () and Radu Vacareanu
Additional contact information
Paul Olteanu: Technical University of Civil Engineering Bucharest
Radu Vacareanu: Technical University of Civil Engineering Bucharest

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 109, issue 3, No 23, 2509-2534

Abstract: Abstract Evaluating inelastic displacement demand of structures exposed to seismic hazard is required for the design of new buildings as well as for seismic risk assessment of existing structures. Most of the buildings are designed to withstand strong earthquakes by responding in the nonlinear range. Having special parts of the structure designed to develop a stable hysteretic behaviour allows the structure to deform in order to accommodate the displacement demand imposed by strong ground motions. This paper is centred on finding a correspondence between the maximum elastic and inelastic displacement responses of the single degree of freedom (SDOF) systems subjected to earthquakes generated by Vrancea seismic source. Vrancea intermediate-depth earthquakes are responsible for the seismic hazard throughout Romanian territory. They have distinctive features, such as large displacement demand and large predominant periods, which makes Romania a special seismic environment. Using a database of Romanian and Japanese strong ground motions generated by intermediate-depth earthquakes and performing nonlinear dynamic analysis on the SDOF oscillators following the Takeda model, this study estimates the inelastic to elastic displacement ratio of reinforced concrete systems. Soil conditions, epicentral distance and magnitude influence on inelastic response is analysed using constant ductility response spectra. The main findings of the study are: the local increase of the inelastic to elastic displacement ratio for type C soil (Eurocode 8 classification) for large magnitude earthquakes and the significant effect of soil conditions on the inelastic response of the SDOF systems. The inelastic amplification was evaluated using a functional form depending on system ductility, soil conditions and earthquake magnitude.

Keywords: Displacement-based design; Inelastic displacement spectra; Coefficient’s method; Displacement ductility; Intermediate-depth; Vrancea (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04930-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04930-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04930-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04930-3