EconPapers    
Economics at your fingertips  
 

An evaluation of various data pre-processing techniques with machine learning models for water level prediction

Ervin Shan Khai Tiu, Yuk Feng Huang (), Jing Lin Ng, Nouar AlDahoul, Ali Najah Ahmed and Ahmed Elshafie
Additional contact information
Ervin Shan Khai Tiu: Universiti Tunku Abdul Rahman
Yuk Feng Huang: Universiti Tunku Abdul Rahman
Jing Lin Ng: UCSI University
Nouar AlDahoul: Multimedia University
Ali Najah Ahmed: University Tenaga Nasional (UNITEN)
Ahmed Elshafie: University of Malaya

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 1, No 6, 153 pages

Abstract: Abstract Floods are the most frequent type of natural disaster. It destroys wildlife habitat, damages bridges, railways, roads, properties, and puts millions of people at risk. As such, flood detection systems have been developed to monitor the changes of water level and raise an alarm should there be imminent danger. River water level prediction is a significant task in flood mitigation planning and floodplains management. Usually, using raw data of rainfall series directly with machine learning (ML) regression methods, does not result in sufficiently good prediction accuracy. The raw data should be pre-processed using specific techniques to enhance their quality a priori to being applied to the prediction methods. This paper serves to address the stated problem by utilizing various data pre-processing techniques such as the Variational Mode Decomposition (VMD), Bagging, Boosting, Bagging-VMD, and Boosting-VMD to enhance the quality of input data and thus culminating in improved model accuracy. The five proposed pre-processing techniques were applied to the observed daily rainfall series of the Dungun river basin, Malaysia, for the period starting from November to February (Northeast Monsoon) from 1996 to 2016. Two machine learning models, the base models (Ori), that is the artificial neural network (ANN) and the support vector regression (SVR), were used in conjunction with the data pre-processing methods. The comparison between the ML methods with and without data pre-processing was done. It was found that prediction of water levels with the two ML methods of SVR and ANN together with the Boosting-VMD was superior to those results derived with just the base original model (Ori). The advantage of the enhanced models (respectively, founded on SVR and ANN) over the original models (SVR and ANN) is best reflected in the performance statistics. Numerical results in terms of root mean square error (RMSE) of (0.42, 0.20 vs 1.85,1.82), mean absolute percentage error (MAPE) of (4.36, 2.82 vs 18.89, 22.56), mean absolute error (MAE) of (0.28,0.16 vs 1.25, 1.41), and Nash–Sutcliffe efficiency coefficient (NSE) (0.96, 0.99 vs 0.25, 0.27) were obtained for the respective models. Additionally, various data visualization graphs such as hydrographs, residual hydrographs, peak-estimates, and box and whisker plots were illustrated to compare between various data pre-processing techniques. The experimental results showed that both the Boosting and the Boosting-VMD methods showed better performance over the other techniques. The Boosting-ANN model was found to be the better model to predict river water levels with the lowest RMSE (0.19), MAPE (2.72), and MAE (0.15) and the highest NSE (0.99).

Keywords: Artificial neural network; Bagging; Boosting; River water level prediction; Support vector regression; Variational Mode Decomposition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04939-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04939-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04939-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04939-8