EconPapers    
Economics at your fingertips  
 

Using NARX neural network to forecast droughts and floods over Yangtze River Basin

Jielong Wang () and Yi Chen
Additional contact information
Jielong Wang: Tongji University
Yi Chen: Tongji University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 1, No 11, 225-246

Abstract: Abstract Drought and flood events are two extreme climate phenomena which usually bring enormous economic and social loss. For meeting the goal of flood and drought prevention, the nonlinear autoregressive with exogenous input (NARX) neural network is employed to bridge the data gap between the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) over Yangtze River Basin (YRB). The precipitation data from NASA Global Precipitation Measurement, temperature data from Global Historical Climatology Network and the Climate Anomaly Monitoring System, and terrestrial water storage anomalies (TWSA) from Global Land Data Assimilation System (GLDAS) are considered as the external inputs. Meanwhile, the performance of NARX models is evaluated for all possible combinations of time delays and neurons in order to find the optimal model structures. Then total storage deficit index (TSDI) is constructed based on TWSA reconstructions to assess drought and flood events over YRB, along with forecasting the extremes during the data gap period. The results show that when the number of time delays and neurons equals one and nine, respectively, the NARX model has an optimal performance with root mean square error (rmse), scaled rmse $$R^{ * }$$ R ∗ , Nash-Sutcliff Efficiency (NSE) and correlation coefficient r of 1.34 cm, 0.34, 0.95 and 0.94, respectively. As indicated by TSDI and comparisons with previous studies, YRB has switched from drought periods to increased flood risks with a moderate correlation to global warming and El Niño-Southern Oscillation (ENSO). Finally, the most important conclusion that we successfully predict the flood events during the data gap period suggests that NARX neural network is promising for forecasting short-term hydrological extremes over YRB.

Keywords: NARX; Total storage deficit index; Droughts and floods; GRACE; Global warming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04944-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04944-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04944-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04944-x