EconPapers    
Economics at your fingertips  
 

A multi-model decision support system (MM-DSS) for avalanche hazard prediction over North-West Himalaya

Prabhjot Kaur, Jagdish Chandra Joshi () and Preeti Aggarwal
Additional contact information
Prabhjot Kaur: Snow and Avalanche Study Establishment
Jagdish Chandra Joshi: Snow and Avalanche Study Establishment
Preeti Aggarwal: Panjab University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 1, No 25, 563-585

Abstract: Abstract Avalanche forecasting is carried out using physical as well as statistical models. All these models have certain limitations associated with their mathematical formulation that enable them to perform variably with respect to forecast of an avalanche event and associated danger. To overcome limitations of each individual model, a multi-model decision support system (MM-DSS) has been developed for forecasting of avalanche danger in Chowkibal–Tangdhar (C-T) region of North-West Himalaya. The MM-DSS has been developed for two different altitude zones of the C-T region by integrating four avalanche forecasting models-Hidden Markov model (HMM), nearest neighbour (NN), artificial neural network (ANN) and snow cover model-HIM-STRAT to deliver avalanche forecast with a lead time of three days. Weather variables for these models have been predicted using ANN. Root mean square error of predicted weather variables is computed by using leave one out cross-validation method. Snow and meteorological data of 22 winters (1992–2014) of the lower C-T region and 8 winters (2008–2016) of the higher C-T region have been used to develop avalanche forecasting models for these two sub-regions. All the avalanche forecasting models have been validated by true skill score (TSS), Heidke skill score (HSS), per cent correct (PC), probability of detection (POD), bias and false alarm rate (FAR) using data of five winters (2014–19) for the lower C-T region and three winters (2016–19) for the upper C-T region. In both the C-T regions, for day-1, day-2 and day-3, the HSS of MM-DSS lies between 0.26 and 0.4 and the POD between 0.64 and 0.86.

Keywords: Ensemble forecast; Snow cover model; Avalanche forecast (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04958-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04958-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04958-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04958-5