Bi-directional coupling of an open-source unstructured triangular meshes-based integrated hydrodynamic model for heterogeneous feature-based urban flood simulation
Guoqiang Peng (),
Zhuo Zhang,
Tian Zhang (),
Zhiyao Song and
Arif Masrur
Additional contact information
Guoqiang Peng: Shaanxi Normal University
Zhuo Zhang: Nanjing Normal University
Tian Zhang: Shaanxi Normal University
Zhiyao Song: Nanjing Normal University
Arif Masrur: The Pennsylvania State University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 1, No 32, 719-740
Abstract:
Abstract Urban pluvial flash floods have become a matter of widespread concern, as they severely impact people’s lives in urban areas. Hydrological and hydraulic models have been widely used for urban flood management and urban planning. Traditionally, to reduce the complexity of urban flood modelling and simulations, simplification or generalization methods have been used; for example, some models focus on the simulation of overland water flow, and some models focus on the simulation of the water flow in sewer systems. However, the water flow of urban floods includes both overland flow and sewer system flow. The overland flow processes are impacted by many different geographical features in what is an extremely spatially heterogeneous environment. Therefore, this article is based on two widely used models (SWMM and ANUGA) that are coupled to develop a bi-directional method of simulating water flow processes in urban areas. The open source overland flow model uses the unstructured triangular as the spatial discretization scheme. The unstructured triangular-based hydraulic model can be better used to capture the spatial heterogeneity of the urban surfaces. So, the unstructured triangular-based model is an essential condition for heterogeneous feature-based urban flood simulation. The experiments indicate that the proposed coupled model in this article can accurately depict surface waterlogged areas and that the heterogeneous feature-based urban flood model can be used to determine different types of urban flow processes.
Keywords: Spatial heterogeneity; Geographic modelling; Comprehensive analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04966-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04966-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04966-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().