Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China
Xu Chen,
Ruiguang Han (),
Ping Feng and
Yongjie Wang
Additional contact information
Xu Chen: Hydrology Bureau of Haihe River Water Conservancy Commission, MWR
Ruiguang Han: Hydrology Bureau of Haihe River Water Conservancy Commission, MWR
Ping Feng: Tianjin University
Yongjie Wang: Tianjin University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 2, No 21, 1305-1337
Abstract:
Abstract Both climate and land-use changes can influence drought in different ways. Thus, to predict future drought conditions, hydrological simulations, as an ideal means, can be used to account for both projected climate change and projected land-use change. In this study, projected climate and land-use changes were integrated with the Soil and Water Assessment Tool (SWAT) model to estimate the combined impact of climate and land-use projections on hydrological droughts in the Lutheran River basin. We showed that the measured runoff and the remote sensing inversion of soil water content were simultaneously used to validate the model to ensure the reliability of the model parameters. Following calibration and validation, the SWAT model was forced with downscaled precipitation and temperature outputs from a suite of nine global climate models (GCMs) based on CMIP5, corresponding to three different representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5) for three distinct time periods: 2011–2040, 2041–2070 and 2071–2100, referred to as early century, mid-century and late-century, respectively, and the land use predicted by the CA–Markov model in the same future periods. Hydrological droughts were quantified using the standardized runoff index (SRI). Compared to the baseline scenario (1961–1990), mild drought occurred more frequently during the next three periods (except for the 2080s under the RCP2.6 emissions scenario). Under the RCP8.5 emissions scenario, the probability of severe drought or above occurring in the 2080s increased, the duration was prolonged, and the severity increased. Under the RCP2.6 scenario, the upper central region of the Luanhe River in the 2020s and upper reaches of the Luanhe River in the 2080s were more likely to experience extreme drought events. Under the RCP8.5 scenario, the middle and lower Luanhe River in the 2080s was more likely to experience these conditions. Graphic abstract
Keywords: Climate change; Land-use change; Future hydrological drought; SDSM; CA–Markov; SWAT model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04992-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04992-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04992-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().