Dust pollution caused by an extreme Santa Ana wind event
Christian A. Álvarez (),
Noel Carbajal and
Luis F. Pineda-Martínez
Additional contact information
Christian A. Álvarez: Instituto Potosino de Investigación Científica y Tecnológica, A.C.
Noel Carbajal: Instituto Potosino de Investigación Científica y Tecnológica, A.C.
Luis F. Pineda-Martínez: Universidad Autónoma de Zacatecas
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 3, No 2, 1427-1442
Abstract:
Abstract In arid and semiarid regions from the southwestern USA and vast areas of northwestern Mexico, Santa Ana wind events modify the environment with high temperatures, very low humidity, and dust storms representing a recurrent phenomenon that triggers asthma and other respiratory diseases. While research has emphasized Santa Ana wind effects on the USA side, northwestern Mexico has been less investigated. Numerical modeling of a severe dust storm in November 2018, applying the Weather Research and Forecasting model coupled with a chemistry module (WRF-Chem), revealed that erosion, transport, and dust storms extend along the peninsula and the Gulf of California. Santa Ana winds eroded large areas, transported desert conditions to urban zones, causing high dust concentrations and reducing the relative humidity below 10%, deteriorating climatic conditions favorable to wellness. In Tijuana, Mexicali, Ensenada, San Diego, and Los Angeles, PM10 and PM2.5 concentrations (particle matter with diameter below 10 µm and 2.5 µm) reached values over 2000 µg/m3 for PM10, with daily mean concentrations well above national standards, leading to poor air quality and representing a health threat even in short-term exposure. This Santa Ana event transported dust particles several hundreds of kilometers over urban areas, the Gulf of California, and the Pacific Ocean. Severe soil deterioration was simulated within the study area, reaching dust emissions above 700,000 t, including croplands from the northern part of Baja California and Sonora's coastal area.
Keywords: Santa Ana winds; Dust pollution; WRF-Chem modeling; Urban air quality (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04996-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-04996-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04996-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().