EconPapers    
Economics at your fingertips  
 

Rapid eco-physical impact assessment of tropical cyclones using geospatial technology: a case from severe cyclonic storms Amphan

Manoranjan Mishra (), Dipika Kar, Manasi Debnath, Netrananda Sahu and Shreerup Goswami
Additional contact information
Manoranjan Mishra: Khallikote University
Dipika Kar: Khallikote University
Manasi Debnath: Adamas University
Netrananda Sahu: University of Delhi
Shreerup Goswami: Sambalpur University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 3, No 43, 2395 pages

Abstract: Abstract The tropical cyclones are very destructive during landfall, generating high wind speeds, heavy intensive rainfall, and severe storm surges with huge coastal inundations that have massive socioeconomic and ecological catastrophic effects on human beings and the economic well-being. The sizable ecological effects of cyclonic storms cannot be ignored because of the uncertainty of impact, intensity induced by a warming ocean, and sea level rise. The Super Cyclonic Storm Amphan which falls under the category five classifications under the scheme of the India Meteorological Department (IMD), on the basis the maximum sustained wind speeds gusting up to 168 km/h affected parts of West Bengal and Odisha in India, and south-west Bangladesh between May 16 and 20, 2020. In this work, we have focused on the coastal districts of Kendrapada, Bhadrak, Balasore in Odisha, Purba Medinipur, and South Twenty-Four Parganas in West Bengal, India and, Khulna, Barisal division of Bangladesh that have been seriously affected by the Super Cyclonic Storm Amphan. The objective of the study is to analyze the eco-physical assessment of tropical cyclone Amphan using geospatial technology. Therefore, shoreline change detection and enhance vegetation index have been used in this research work to systematically analyze the eco-physical impact parameters of Cyclonic Storm Amphan using ortho-rectified Landsat 8/OLI imagery and MODIS dataset of USGS with high spatial resolutions of 30–500 m. The result highlights that about 60.33% of the total transects of the study area was eroded, but only 24.99% of the total transects experienced accretion, and 14.68% of the total transects depicted stability. The scientific study will benefit coastal managers and policymakers in formulating action plans for coastal zone management, natural resilience, and sustainable future development.

Keywords: Geospatial technology; Amphan; Super cyclone; Tropical cyclone; Coastal management (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05008-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05008-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05008-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05008-w