EconPapers    
Economics at your fingertips  
 

Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model

K. K. Shukla, Raju Attada (), Aman W. Khan and Prashant Kumar
Additional contact information
K. K. Shukla: Indian Institute of Science Education and Research Mohali
Raju Attada: Indian Institute of Science Education and Research Mohali
Aman W. Khan: EPSA, ISRO
Prashant Kumar: EPSA, ISRO

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 110, issue 3, No 22, 1887-1910

Abstract: Abstract This study uses a high-resolution Weather Research and Forecasting model coupled with the chemistry module (WRF-Chem) to analyze the dust storm that occurred during 12‒17 June 2018 over the northwest Indo-Gangetic Plain (NW-IGP). The performance of WRF-Chem is validated against the ground- and space-based datasets before being used to investigate the impact of the dust storm on the air quality and radiative changes. The aerosols and meteorological parameters from in situ, satellite and reanalysis were used to evaluate the WRF-Chem model. The horizontal and vertical distributions of dust aerosols reproduced by the WRF-Chem agree with the observations. However, the WRF-Chem-simulated mean aerosol optical depth (AOD ~ 1.21 ± 0.17) is slightly underestimated compared to MODIS AOD (1.60 ± 0.32). Furthermore, the evolution of dust storm and associated changes in atmospheric and air quality conditions are well simulated by the WRF-Chem. The ERA5 and WRF-Chem suggest that the dust storm is triggered by the low-pressure system over the NW-IGP, which helps in bringing the dust-laden air masses from the west and southwest of the study region with the strong southwesterly winds. Our results reveal that the dust storm has a significant impact on air quality and horizontal visibility. During the peak time of the dust storm, the horizontal visibility dropped drastically from 4 to 0.48 km. In addition, the daily averaged in situ and model-simulated PM10 and PM2.5 concentration abruptly increased by a factor of two on peak time of the storm that deteriorated the air quality. The WRF-Chem-simulated dust-induced net radiative forcing shows the surface cooling (− 16.18 ± 3.88 Wm−2), atmospheric warming (+ 11.62 ± 4.96 Wm−2) and top of the atmospheric cooling (− 4.57 ± 0.92 Wm−2) due to the presence of elevated dust aerosols.

Keywords: Dust storm; Air quality; WRF-Chem model; Radiative forcing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05017-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05017-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05017-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05017-9