EconPapers    
Economics at your fingertips  
 

Numerical simulation of the Qulong Paleolandslide Dam event in the late pleistocene using the finite volume type shallow water model

Xiaohui Sun, Xudong Han, Jianping Chen (), Yiding Bao and Wei Peng
Additional contact information
Xiaohui Sun: Jilin University
Xudong Han: CGS
Jianping Chen: Jilin University
Yiding Bao: Jilin University
Wei Peng: Jilin University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 111, issue 1, No 19, 439-464

Abstract: Abstract The Qulong paleolandslide dam event lies in the Benzilan-Batang zone of the upper Jinsha River. The Jinsha River is one of the most extensive water resources in southwest China. Here, the geological environment is complex, and the tectonic activity is intense. Thus, landslide dam events occur frequently, forming large barrier lakes. Analyzing and understanding these events is vital to ensure the safe development and utilization of land and water resources in the Jinsha River valley. In this study, the Qulong paleolandslide dam event, which formed a large barrier lake, is analyzed in detail. The topographic and grain-size analyses of the barrier lake's Qulong gully and lacustrine sediments imply that the Qulong paleolandslide occurred during the last interglacial period. The instability of moraine in the source area caused the landslide dam event that forms a rapid landslide and then transformed into a high-speed clastic flow. Historical data indicate that more than 90% of barrier lakes along the Jinsha are earthquake-triggered landslides, so the relationship between magnitude and epicenter distance of earthquake that induced the Qulong paleolandslide are calculated by Newmark method. The SFLOW software has been used to examine the post-failure evolution and movement characteristics of the Qulong paleolandslide. The results show that the speed of clastic flow reaches 41 m/s or so, and the clastic flow blocks the ancient Jinsha River channel whose thickness reaches 100 m or so, the largest up to 111 m, and its length is more than 4.5 km. Moreover, the high-speed clastic flow runs over the front of the Yinduba platform.

Keywords: Landslide dam; SFLOW software; High-speed clastic flow; Finite volume method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05060-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05060-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05060-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05060-6