EconPapers    
Economics at your fingertips  
 

Assessment of flood-risk areas using random forest techniques: Busan Metropolitan City

Jihye Ha and Jung Eun Kang ()
Additional contact information
Jihye Ha: Pusan National University
Jung Eun Kang: Pusan National University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 111, issue 3, No 11, 2407-2429

Abstract: Abstract Climate change increases both the risks and effects of flooding in urban areas, which, without mitigation, may lead to social catastrophes. In Korea, devastating typhoons and overflows account for approximately 90% of the country’s natural disasters, and the many man-made features of urban environments exacerbate the detrimental effects whenever flooding occurs. Many regression analysis methods exist for assessing geographical flood risk; furthermore, a handful of machine learning methods have been created for mitigation and estimation purposes—there are none for prevention. Therefore, in this study, we developed a machine learning flood assessment model that leverages several machine learning models for the Busan Metropolitan City. Each was applied to a test dataset, and their performances were evaluated based on accuracy, sensitivity, specificity, and area under the curve; thereafter, the model determined to be the most reliable was used to create a flood risk assessment map. The model was then used to assess the areas of highest probability of flooding. Upon its completion, we discovered that flooding may now occur with less rainfall than that of the 10-year return period. The derived map is expected to be used as a basic source for the development of preventive countermeasures against urban flooding, thus contributing to the enhancement of flood control and response capacities in applicable regions.

Keywords: Machine learning; Prevention; Risk assessment; South Korea; Urban flooding (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05142-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05142-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05142-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05142-5