EconPapers    
Economics at your fingertips  
 

Modeling soil detachment capacity by rill flow under the effect of freeze–thaw and the root system

Jianye Ma, Zhanbin Li (), Baoyang Sun, Bo Ma and Letao Zhang
Additional contact information
Jianye Ma: Northwest Agriculture and Forestry University
Zhanbin Li: Northwest Agriculture and Forestry University
Baoyang Sun: Changjiang River Scientific Research Institute of Changjiang Water Resources Commission
Bo Ma: Northwest Agriculture and Forestry University
Letao Zhang: Henan University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 1, No 9, 207-230

Abstract: Abstract Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing soil detachment, with the implementation of a series of ecological restoration projects. However, few studies were conducted to evaluate soil detachment process under the combined effect of freeze–thaw and root system. This study investigated the potential effects of freeze–thaw and the root system on soil detachment capacity. Soil detachment capacity of two soil types, sandy loam and silt loam, was investigated, under four treatments, control (bare soil without freeze–thaw and root), freeze–thaw, root system and freeze–thaw + root system. A prediction model was developed to calculate soil detachment capacity under the effect of freeze–thaw and the root system. Hydraulic flume experiments were carried out at 4 flow rate (6–24L·min−1) and 1 slope (10°). The results illustrated that the detachment capacity of sandy loam was higher than that of silt loam. The soil detachment capacity of two soils was reduced and increased by the root system and freeze–thaw, respectively, although the former effect was significant (P 0.84). The inclusion of root weight density significantly improve the accuracy of the soil detachment capacity prediction model developed by hydraulic parameters. A general model based on stream power and root weight density was developed to quantify soil detachment capacity and was shown to have a high soil detachment capacity prediction accuracy for both soils treated by freeze–thaw and the root system [NSE = 0.88, R2 = 0.90].

Keywords: Soil detachment capacity; Freeze–thaw; Root system; Prediction model (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05178-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05178-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05178-7

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05178-7