EconPapers    
Economics at your fingertips  
 

To assess the impacts of climate change on runoff in Golestan Province, Iran

Esmaeil Silakhori (), Mohammad Reza Dahmardeh Ghaleno (), Sarita Gajbhiye Meshram () and Ehsan Alvandi ()
Additional contact information
Esmaeil Silakhori: Gorgan University of Agriculture Sciences and Natural Resources
Mohammad Reza Dahmardeh Ghaleno: University of Zabol
Sarita Gajbhiye Meshram: Water Resources and Applied Mathematics Research Lab
Ehsan Alvandi: Gorgan University of Agriculture Sciences and Natural Resources

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 1, No 12, 300 pages

Abstract: Abstract Climate is a complex environment that is evolving primarily as the greenhouse gases increase. Due to the importance of climate change and the impact it can have on water resources, evaluation of the effect of climate change on water sources has been considered in various watersheds on the planet in recent years. The aim of this research is to assess the impacts of climate change on runoff in Golestan Province. This research consists of two parts of climate and hydrology. In the climate change part, daily data of the minimum temperature, maximum temperature, precipitation, and sunny hours of the synoptic station of the Hashemabad of Gorgan and the rain gauge station of the Naharkhoran during the period of 1985–2013 were simulated using LARS-WG6 statistical model. After verifying the model efficiency in simulating the mentioned meteorological parameters in the Ziarat watershed, the data from three Representative Concentration Pathways (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) from HadGEM2-ES model in two periods of 2041–2060 and 2061–2080 were downscaled by the use of LARS-WG6 model to evaluate the impact of climate change on runoff. In the hydrological part, rainfall and runoff were simulated using the IHACRES hydrological model. After calibration in the 1990–1992 period and validation in 2001, the temperature and rainfall data extracted from the LARS-WG6 model were entered in the IHACRES model and runoff changes caused by climate change were calculated in future period relative to the base period. Based on the estimation of LARS-WG6 model for the future scenarios, the results showed that the minimum and maximum temperature of the Ziarat watershed will increase to the amounts of 1.81 to 4.56 °C. The amount of rainfall also varies from 4.79to 16.38 mm in comparison with the base period. Also, the amount of runoff under three scenarios in three periods has changed from −0.373 to 0.308 m3/s in comparison with the base period. These results can be considered in the long-term development programs in water resources sector.

Keywords: Climate change; Runoff; IHACRES; LARS-WG6; Ziarat watershed (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05181-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05181-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05181-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05181-y