EconPapers    
Economics at your fingertips  
 

Geochemical assessment of groundwater in a desertic region of India using chemometric analysis and entropy water quality index (EWQI)

Milap Dashora (), Anand Kumar (), Sanjay Kumar (), Pankaj Kumar (), Alok Kumar () and Chander Kumar Singh ()
Additional contact information
Milap Dashora: Central University of Rajasthan
Anand Kumar: Nalanda University
Sanjay Kumar: Central University of Rajasthan
Pankaj Kumar: Institute for Global Environmental Strategies
Alok Kumar: Central University of Rajasthan
Chander Kumar Singh: TERI School of Advanced Studies

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 1, No 32, 747-782

Abstract: Abstract Natural processes and anthropogenic activities are the major factors that can deteriorate groundwater quality. This study provides an insight into groundwater quality and its drinking suitability in part of Rajasthan. The physicochemical analysis of parameters (pH, EC, TDS, Ca2+, Mg2+, Na+, K+, F−, HCO3−, Cl−, NO3−, and SO42−) was conducted in the laboratory. High alkalinity and hardness were significant problems in most of the groundwater samples. The maximum concentration observed for F− and NO3− was 3.8 mg/L and 110.70 mg/L, and around 27.66% and 12.76% of samples, respectively, were above the WHO permissible limits. The dominant natural processes affecting groundwater quality were assessed through chemometric analysis, geochemical modeling, and conventional plots. Carbonate dissolution, reverse ion exchange, silicate weathering, evaporite dissolution, and rock-water interaction were the dominant processes responsible for groundwater's chemical characteristics. However, anthropogenic activities like improper drainage of sewage and fertilizer use in agriculture also impact groundwater quality. Cluster analysis resulted in 4 groups representing specific geochemical properties within each group. Entropy-based weights of the water quality parameters were used to calculate the entropy water quality index (EWQI) to assess groundwater suitability for drinking. Nearly 25.53% of samples (EWQI > 100) were unsuitable for drinking. Policymakers can assess groundwater suitability using EWQI to prioritize the interventions for providing suitable quality water for domestic use. This study's findings are relevant from the public health perspective and in understanding water quality parameter’s spatial distribution.

Keywords: Groundwater; Multivariate; Fluoride; Nitrate; Saturation index; EWQI (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05204-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05204-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-05204-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05204-8