EconPapers    
Economics at your fingertips  
 

Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information

M. Amparo Núñez-Andrés (), Nieves Lantada Zarzosa () and José Martínez-Llario ()
Additional contact information
M. Amparo Núñez-Andrés: Universitat Politècnica de Catalunya BarcelonaTech
Nieves Lantada Zarzosa: Universitat Politècnica de Catalunya BarcelonaTech
José Martínez-Llario: Universitat Politècnica de València

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 3, No 32, 2649-2672

Abstract: Abstract The fragmentation phenomenon has a significant effect on rockfall risk assessment. This information is difficult to obtain, but it is key to improving rockfall modelling. For this reason, the RockModels team has gathered data on the fragmentation of several natural events since 2014 that nowadays wants to share them with professionals, academics and stakeholders. The best way for the dissemination of this information is the use of standard or data specifications in order to be interoperable. A fragmentation rockfall database has been created using all the gathered information, according to the INSPIRE Natural Hazard Area Data Specification currently in force. However, new tables have had to be added, since this specification does not consider fragmentation data. There are currently 6000 records of geometries of source areas, envelopes, deposits and mostly individual blocks. A web mapping application, with an automatic function for coordinate reference system transformation, has been created to facilitate access to the spatial database information. All that was developed on open-source software such as OpenLayers JavaScript library, database (PostGre-PostGIS) and the map generating Web Map Service (GeoServer). As more data are collected, the database can be easily updated and the new information will be published. Moreover, to improve data interpretation, a future task is to incorporate 3D models on the web application. The existence of this public database will facilitate research and advance in knowledge of this kind of natural hazards. Graphical abstract Rockfall volume distribution inventory data. Georeferenced rockfall database including fragmentation data according to Technical Data Specifications of INSPIRE for natural hazards zone. Database mapping of rockfall inventory data in a WMS open access. Geometric modelling and geovisualization to fragmentation process in rockfall investigations.

Keywords: Rockfall database; Fragmentation data; SDI; Web mapping (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05282-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05282-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05282-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05282-2