On the evaluation of internal stability of gap-graded soil: a status quo review
Zengguang Xu () and
Yan Ye
Additional contact information
Zengguang Xu: Xi’an University of Technology
Yan Ye: Xi’an University of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 1, No 3, 63-102
Abstract:
Abstract Internal instability is a phenomenon of fine particle redistribution in granular materials under the seepage action and consequent change in the soil’s internal structure and hydraulic and mechanical properties. It is one of the primary causes of failures of sand-gravel foundations and embankment dams. The criteria establishment is considered the key to solving the erosion problems, so the existing internal stability criteria need a review and classification to study the recent development trends in soil seepage and erosion. Therefore, this paper aims at reviewing the internal stability factors of gap-graded soil with a focus on the internal erosion mechanism and internal stability evaluation based on geometric and hydraulic criteria. Firstly, the paper compared the effect of several commonly used geometric criteria for gap-graded soil evaluation, such as particle size, fine content, void ratio, and fractal dimension. Furthermore, it provided a hydraulic criteria overview and analyzed the effects of the hydraulic gradient, hydraulic shear stress, confining pressure, and pore velocity on internal erosion. The geometric–hydraulic coupling methods were introduced, with a detailed elaboration of the erosion resistance index method based on accumulated dissipated energy. The capabilities and limitations of these criteria were discussed throughout the paper. It was found that combined Kezdi’s criterion and Kenney and Lau’s criterion is more reliable to evaluate internal stability of soil. The gap-graded soil with fine particle content higher than 35% is not necessarily internally stable. Finally, the energy-based method (erosion resistance index method) can effectively reproduce the total amount of erosion mass and the final spatial distribution of fine particles and identifies erosion. The review's outcome can be used as a basis to evaluate the internal erosion risk for gap-graded soils. The evaluation methods discussed here can help identify the zones of relatively high erosion potential.
Keywords: Erosion resistance index; Geometric criteria; Hydraulic criteria; Internal erosion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05317-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05317-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05317-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().