Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park
Zhengyi Yao,
Jianhua Xiao (),
Xiaosong Xie,
Haijun Zhu and
Jianjun Qu
Additional contact information
Zhengyi Yao: Chinese Academy of Sciences
Jianhua Xiao: Chinese Academy of Sciences
Xiaosong Xie: Shanghai Electric Power Generation Engineering Co
Haijun Zhu: East China Electric Power Design Institute Co. Ltd
Jianjun Qu: Chinese Academy of Sciences
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 1, No 28, 673-697
Abstract:
Abstract Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, field-measured sand fluxes, and theoretical calculations, we designed the form, height, and structure of such sand fences. The aeolian sand in the study area is uniformly graded fine sand with particles ranging in size from 0.063 to 0.250 mm. Drift potential averaged 646 VU (i.e., a high-energy wind environment) and dune migration averaged 11.9 m yr−1. The vertical mass flux profiles of aeolian sand followed power functions. The sand quantity transported below 10 cm in height accounted for > 99.8% of the total, with most of the remainder transported above 20 cm. The yearly maximum depth of sand deposited at the sand fences ranged from 1.63 to 2.50 m for mobile dunes and from 0.84 to 1.08 m for flat land. The lateral pressure exerted on the sand fence by accumulated sand ranged from 4.9 to 9.2 kPa for mobile dunes and from 1.1 to 3.1 kPa for flat land. Our results suggest an optimal sand fence height of 2.0 to 2.5 m for areas with mobile dunes and 1.0 to 1.5 m for flat land. To conserve materials, the sand fence could be combined with a security fence or wind fence. Our results provide a reference for designing sand fences in sandy areas.
Keywords: Sand fence; Solar park; Blown sand hazards; Aeolian sand; Mobile dunes (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05319-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05319-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05319-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().