Influence of hydrate exploitation on stability of submarine slopes
Yapeng Zhao,
Liang Kong (),
Lele Liu and
Jiaqi Liu
Additional contact information
Yapeng Zhao: Qingdao University of Technology
Liang Kong: Qingdao University of Technology
Lele Liu: Qingdao Institute of Marine Geology
Jiaqi Liu: Qingdao University of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 1, No 30, 719-743
Abstract:
Abstract The decomposition of natural gas hydrate will reduce the cementation effect of hydrate and produce ultra-static pore pressure, which will change the mechanical characteristics of the reservoir. Eventually, a series of geological disasters could be triggered, of which the submarine landslide is a typical example. In order to analyze the stability of hydrate-bearing submarine slopes and to explore the internal relationship between hydrate decomposition and submarine landslides, a “two-step reduction method” was described in this paper. This method was based on a strength reduction approach, which can be used to assess the effects of the initial geostress balance and hydrate decomposition on substrate strength reduction. This method was used to reveal the essence of hydrate decomposition, and then, a joint operation mode of multi-well was proposed. The internal relationship between hydrate decomposition and submarine landslides was analyzed in detail. And the development process and mechanism of submarine landslide were deeply discussed. The results showed that hydrate decomposition is a dynamic process of stress release and displacement, where the “stress inhomogeneity” distributed along the slope is transformed into “displacement inhomogeneity.” We concluded that hydrate decomposition could trigger a submarine landslide, especially along a sliding surface. The formation of submarine landslide is a gradual development process and presents the dual characteristics of time and space.
Keywords: Natural gas hydrate; Decomposition; Landslide; Strength reduction; Submarine slope (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05321-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05321-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05321-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().