Spatial prediction of highway slope disasters based on convolution neural networks
Chao Yin (),
Zhanghua Wang and
Xingkui Zhao
Additional contact information
Chao Yin: Shandong University of Technology
Zhanghua Wang: Shandong Kezheng Project Management Co., LTD
Xingkui Zhao: Shandong Dongtai Engineer Consulting Co., LTD
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 2, No 1, 813-831
Abstract:
Abstract In order to clarify the spatial differentiations of highway slope disasters (HSDs) in Boshan District, spatial prediction was carried out based on ECG-CNN with the support of GIS. Spatial prediction factors of HSDs were selected, and the stabilities of the 147 highway slopes in Boshan District were determined. The spatial prediction model of HSDs was established by ECG-CNN, and the spatial susceptibility map of HSDs in Boshan District was plotted. Influences of the prediction factor combinations and the drill sample and verification sample combinations on the prediction success rates were verified. The results show that low susceptible areas, medium susceptible areas and high susceptible areas account for 56.92%, 28.46% and 14.62% of the total areas of Boshan District, respectively. Some sections of Binlai Expressway, G205, G309, S210 and S307, pass through high susceptible areas. The surface cutting depth has a small impact on the prediction success rate, while the elevation and gradient have great impacts on the prediction success rate. When the drill samples are small, network drill’s maturity has a great impact on the prediction success rate, while when there are many drill samples, the model’s logical structure itself has a large impact on the prediction success rate.
Keywords: Highway slope disaster (HSD); ECG-CNN; Prediction factor; Prediction success rate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05325-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:2:d:10.1007_s11069-022-05325-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05325-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().