EconPapers    
Economics at your fingertips  
 

Deformation behavior and damage-induced permeability evolution of sandy mudstone under triaxial stress

Yang Liu, Tong Zhang (), Yankun Ma, Shuaibing Song, Ming Tang and Yanfang Li
Additional contact information
Yang Liu: Anhui University of Science & Technology
Tong Zhang: Anhui University of Science & Technology
Yankun Ma: Anhui University of Science & Technology
Shuaibing Song: Anhui University of Science & Technology
Ming Tang: Anhui University of Science & Technology
Yanfang Li: Anhui University of Science & Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 3, No 15, 1729-1749

Abstract: Abstract The mechanic and permeability behavior in sandy mudstone is crucial to hazard prevention and safety mining. In this study, to investigate the evolution and characteristic of permeability and mechanical properties of sandy mudstone subjected to loading of in-site stress, a series of triaxial compression–seepage experiments are performed. The increase in permeability and decrease in mechanical strength gradually transformed to the decrease in permeability and increase in mechanical strength responding to the increase in confining stress from 5 to 15 MPa, which corresponds to the transformation from brittleness to ductility in sandy mudstone, and the transformation threshold of 10 MPa confining stress was determined. The penetration shear fracture generated at brittle regime, while plastic flow behavior presented at semibrittle and ductile state. The critical value of the yielding stage in axial strain increases with the increase in confining stress. The relatively higher permeability corresponds to the higher pore pressure during the increase in confining stress. The increase in confining stress promoted the increase in volumetric strain, while increased pore pressure reduced the volumetric strain, and the lower permeability occurred at higher volumetric strain. In addition, an improved permeability model was developed to describe the loading-based permeability behavior considering the Klinkenberg effect.

Keywords: Sandy mudstone; Brittle–ductile transformation; Permeability evolution; Permeability model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05366-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05366-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05366-z

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05366-z