EconPapers    
Economics at your fingertips  
 

Impacts of climate and reservoirs on the downstream design flood hydrograph: a case study of Yichang Station

Rongrong Li (), Lihua Xiong (), Xini Zha (), Bin Xiong (), Han Liu (), Jie Chen (), Ling Zeng () and Wenbin Li ()
Additional contact information
Rongrong Li: Wuhan University
Lihua Xiong: Wuhan University
Xini Zha: Wuhan University
Bin Xiong: Nanchang University
Han Liu: Wuhan University
Jie Chen: Wuhan University
Ling Zeng: Changjiang Water Resources Commission
Wenbin Li: Wuhan University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 113, issue 3, No 18, 1803-1831

Abstract: Abstract The Upper Yangtze River (above Yichang) in China has constructed the world's largest reservoir group with the Three Gorges Reservoir (TGR) as the core, the operation of these reservoirs and future climate change will no doubt alter the downstream hydrological processes and pose a challenge to the downstream flood design. As Yichang Hydrologic Station is 44 km downstream of TGR, how the design flood at Yichang Station would be impacted in the future by climate and upstream reservoirs has rarely been investigated. In this study, the climate and upstream reservoirs effects on design flood at Yichang Station are evaluated under six future climate and reservoir scenarios (S1, S2, S3, S4, S5 and S6) with different combinations of summer precipitation anomaly (SPA) and reservoir index (RI), in which SPA is obtained from global climate models under the three emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) of CMIP6 and RI is calculated under the two reservoir conditions (RI at current level and RI at planning level). The SPA and RI of S1, S2, S3, S4, S5 and S6 are, respectively, substituted into the optimal nonstationary GEV probability model, and the corresponding 1000-year design floods are estimated by using average annual reliability method. Under the same future reservoir condition, the flood peak discharge, 3-day, 7-day, 15-day and 30-day flood volume (denoted as Qm, W3, W7, W15 and W30, respectively) under SSP2-4.5 and SSP5-8.5 are 0.2% ~ 2.5% larger than those under SSP1-2.6. The change rates of Qm, W3, W7, W15 and W30 under six scenarios relative to the stationary design flood values calculated by Changjiang Water Resources Commission range from −11.4% to −23.9%, and the reduction amount of Qm is more than 16,000 m3/s even under SSP5-8.5. Therefore, reservoirs impact on the design flood of Yichang Station is quite prominent.

Keywords: Design flood; Climate and reservoirs; Nonstationary GEV probability model; Yichang Station (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05370-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05370-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05370-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05370-3