Distribution of the geochemical signature caused by the 2011 Tohoku-oki tsunami in Misawa harbor, northern Japan
Mike Frenken,
Piero Bellanova,
Yuichi Nishimura,
Klaus Reicherter and
Jan Schwarzbauer ()
Additional contact information
Mike Frenken: RWTH Aachen University
Piero Bellanova: RWTH Aachen University
Yuichi Nishimura: Hokkaido University
Klaus Reicherter: RWTH Aachen University
Jan Schwarzbauer: RWTH Aachen University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 1, No 13, 313-333
Abstract:
Abstract The 2011 Tohoku-oki tsunami left a characteristic geochemical signature in the sediments of the Misawa harbor on the Aomori coastline (northern Japan), not only in vertical stratigraphy but also in lateral distribution. Suitable indicator compounds for the tsunami impact were used to identify and characterize the distribution of geochemical patterns within the harbor area. Specific compounds are illustrating the different emission sources and distribution during the 2011 tsunami. Petrogenic-derived markers, such as hopanes and polycyclic aromatic hydrocarbons, provide information about the tsunami-related destruction of facilities and technical material and the subsequent release of, for instance, oil and grease. Linear alkylbenzenes and diisopropylnaphthalene are used to identify sewage-derived contaminants released by the tsunami. Old burden markers such as dichlorodiphenyltrichloroethane and its metabolites or polychlorinated biphenyl signal erosion and rearrangement of contaminants present in the sediments prior to the tsunami. Distribution of the analyzed pollutant groups indicate the tsunami-related release through various emission sources and their potential origin. While petrogenic-derived pollutants revealed a significant local spread with hotspot formation near the release, sewage-derived compounds were widely distributed and originated from a diffuse source not necessarily located in the harbor area. In contrast to freshly released contaminants, old burden markers are characterized by erosion of contaminated pre-tsunami sediment, the remobilization of pollutants and subsequent deposition of these sediment-bound contaminants in the tsunami layer. The correlation between all pollutant groups by their preferred accumulation reveals that source-specific compounds show different emission sources but reveal also a topographical control of the pollutant distribution by the 2011 tsunami.
Keywords: 2011 Tohoku-oki tsunami; Emission source; Geochemical signature; Distribution of geochemical marker; Anthropogenic marker; Tsunami geochemistry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05391-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05391-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05391-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().