A refined model of a typhoon near-surface wind field based on CFD
Youtian Yang (),
Lin Dong (),
Jiazi Li (),
Wenli Li (),
Dan Sheng () and
Hua Zhang ()
Additional contact information
Youtian Yang: Beijing Normal University
Lin Dong: Beijing Normal University
Jiazi Li: Beijing Normal University
Wenli Li: Beijing Normal University
Dan Sheng: Beijing Normal University
Hua Zhang: Beijing Normal University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 1, No 16, 389-404
Abstract:
Abstract The simulation of near-surface typhoon wind fields is crucial for high-precision typhoon hazard assessments and thus of great significance for disaster forecasting, loss risk assessment and emergency management. The terrain correction method for simulating regional large-scale wind fields has a single correction method that cannot satisfy the requirements of refined risk assessment. This paper aims to use the advantage with regard to accuracy of the fluid dynamics mechanism model (CFD, computational fluid dynamics) in small-scale wind speed simulations and obtain a terrain correction method suitable for simulating regional large-scale wind fields by extracting the spatial variation of the wind speed over complex terrain. Specifically, typical mountains with different cross-sectional shapes and slopes are used to characterize the undulating terrain, and the CFD model is used to simulate and analyze the wind speed changes on the upwind and leeward slopes, at the mountain top, and in the downwind area under different initial wind speeds. The wind speed at these locations has a good quantitative relationship with the initial wind speed. Combined with the typical building wind load codes in China, the wind speed correction algorithm suitable for large-scale complex terrain is supplemented and improved. This paper presents the simulation results of three typhoons, and taking Typhoon No. 0713 as an example, a near-surface typhoon wind field simulation is performed. Compared with that of other models, the accuracy of the terrain-corrected simulation results by the method provided in this article is increased by 8.8–16.89%. Such CFD-based typhoon disaster near-surface wind fields can more accurately reflect the spatial distribution and intensity of typhoon wind hazards over large-scale complex terrain and can provide technical support for the loss risk prediction and assessment of forest resources, mountain forestry economies, crops and other vulnerable bodies during typhoon disasters.
Keywords: CFD; Near-surface wind field; Wind speed terrain correction; Typhoon disaster (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05394-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05394-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05394-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().