Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event
Tanmoy Das (),
Vansittee Dilli Rao () and
Deepankar Choudhury ()
Additional contact information
Tanmoy Das: Indian Institute of Technology Bombay
Vansittee Dilli Rao: Indian Institute of Technology Bombay
Deepankar Choudhury: Indian Institute of Technology Bombay
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 1, No 32, 785 pages
Abstract:
Abstract This study examines the stability and failure mechanisms of two landslide-affected slopes in Kerala, India, after an extreme rainfall event. The landslide was triggered by an extreme rainfall event that occurred between August 1st and 10th, 2019. To analyze the landslide mechanism coupled flow deformation was employed in the numerical analysis. The necessity of performing coupled flow deformation analysis over the conventional saturation stability analysis was established by comparing the outcomes obtained from both methods with field observation. The coupled flow deformation finite element analyses were executed based on unsaturated soil mechanics, whereas in the elastic–plastic deformation analysis saturated slope failures below the groundwater table were assumed. The results of elastic–plastic deformation analysis suggested that the slopes were unstable when the water table reached the ground surface because of the rise in pore water pressure and consequent reduction in shear strength. The failure timing, zone of failure, and deformation pattern of the slopes predicted using coupled flow deformation analysis exactly matched with that observed at the field during and after the landslide. The results also showed that decreasing matric suction along the failure surface results in a drop in the safety factor of the slopes from 1.155 to 1.001 and 1.19 to 1.004. The outcomes of all the finite element-based analyses were compared with those calculated using infinite slope analysis, and the results were in good agreement. The results obtained in this article can be used to determine the maximum cumulative rainfall required to cause the slope failure in order to avert possible future disasters.
Keywords: Landslide; Extreme rainfall event; Coupled flow deformation; Matric suction; Infinite slope analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05411-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05411-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05411-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().