Development of a three-dimensional basin model to evaluate the site effects in the tectonically active near-fault region of Gölyaka basin, Düzce, Turkey
Karim Yousefi-Bavil,
Mustafa Kerem Koçkar and
Haluk Akgün ()
Additional contact information
Karim Yousefi-Bavil: Middle East Technical University (METU)
Mustafa Kerem Koçkar: Hacettepe University
Haluk Akgün: Middle East Technical University (METU)
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 1, No 39, 969 pages
Abstract:
Abstract The high seismicity and tectonic activity of the study area located in a near-fault region in Gölyaka, Düzce, results in a bedrock geometry highly complex in the sense of faulting and deformation. This makes this area very challenging in terms of a site response study that would aid seismic hazard assessment. This study develops a basin model to evaluate the site effects in the tectonically formed Plio-Quaternary fluvial sedimentary layers of the Gölyaka region. The selected site uniquely falls within the near-field domain of a section of the North Anatolian Fault System. To determine the presence of these lateral variations in the geology as well as the geometry of the basin over a wide area, surface seismic measurements and deep vertical electrical sounding along with geotechnical boring studies have been performed, and a 3D basin geometry model was developed. The basin model shows that the sediment thickness continues to a depth of approximately 250–350 m with an irregular geometry due to over-step faulting near the southern boundary of the basin. Consequently, this study confirms the spatial variations in the near-field area that depend on basin geometry, material heterogeneity, and topography, indicating dipping and nonuniform stratification in the velocity profiles. Furthermore, the conducted microtremor measurements were used to compare the natural periods of microtremor results, along with interpolated Vs profiles to validate estimated basin depths. In conclusion, this study indicates that a well-developed basin geometry that reflects the complex process associated with the characteristics of the near-fault region could be accurately and reliably determined by developing a 3D basin model to assess site response in an account for seismic hazard assessment studies.
Keywords: Near-fault site effects; 3D basin model; Deep vertical electrical sounding; Active and passive surface wave method; H/V microtremor measurements; Gölyaka basin of Düzce-Turkey (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05418-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05418-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05418-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().