EconPapers    
Economics at your fingertips  
 

Sensitivity analysis of weather research and forecasting (WRF) model output variables to the thunderstorm lifecycle and its application

Haibo Huang (), Caiyan Lin and Yangquan Chen
Additional contact information
Haibo Huang: Meteorological Center of Xinjiang Air Traffic Management Bureau
Caiyan Lin: Civil Aviation Administration of China
Yangquan Chen: Meteorological Center of Xinjiang Air Traffic Management Bureau

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 2, No 36, 1967-1983

Abstract: Abstract Accurate and timely forecasts of thunderstorms at lead times of more than 6 h can greatly improve the efficiency of air traffic flow management. To achieve this goal, thunderstorms occurring at Urumqi International Airport in 2020 were investigated using Weather Research and Forecasting (WRF) model output variables. An attempt was made to study the sensitivity of WRF output variables to the different stages (cumulus, mature, and dissipating) of the thunderstorm lifecycle. The variables considered in this paper include the wind speed (WSPD), composite radar reflectivity, echo top height, convective available potential energy (CAPE), convective inhibition (CIN), and lift index (LI). It was found that CIN is the most sensitive to an approaching thunderstorm. WSPD is extremely sensitive to the thunderstorm occurrence, closely followed by CIN. CAPE, CIN, and LI are all sensitive to dissipating thunderstorms. To improve thunderstorm forecasts, a simple and practical objective thunderstorm forecasting method, i.e., the thunderstorm probability (TSP) forecasting method, based on the combination of the above-mentioned variables, was proposed. Comparison of objective TSP forecasts and manual subjective forecasts indicated that TSP forecasts performed much better than did manual forecasts over the summer period of 2020.

Keywords: Sensitivity analysis; Thunderstorm; WRF model; TSP method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05455-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05455-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05455-z

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05455-z