EconPapers    
Economics at your fingertips  
 

The role of new-emerging lands on sources of aeolian sand deposits driven by shrinking of the Urmia salt lake

Aliakbar Nazari Samani (), Leila Biabani, Hassan Khosravi, Abolhassan Fathabadi, Robert James Wasson and Moslem Borji Hassangavyar
Additional contact information
Aliakbar Nazari Samani: University of Tehran
Leila Biabani: University of Tehran
Hassan Khosravi: University of Tehran
Abolhassan Fathabadi: University of Gorgan
Robert James Wasson: James Cook University
Moslem Borji Hassangavyar: University of Tehran

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 3, No 21, 2925 pages

Abstract: Abstract Urmia Lake, the largest saline lake in Iran and the Middle East, in the northwest of Iran, has shrunk over the past decades. The reduced water level has increased the area of dry land around the lake allowing new environmental hazard such as sand dunes encroachment, particularly on the western side of the lake. New land has emerged as a consequence of lake shrinkage, and this new land is a major sediment source for the creation of sand dunes around the lake. This shrinking of the lake has created emerging lands. These lands play a major role in creating sand dunes around the lake. There are five terrain types that could contribute sediment to the dunes, and it is the main aim of this research to identify the contributions to the dunes of each terrain type. Fifteen surface samples were collected from the five most erodible terrain types, and eight samples were collected from the dunes both downwind and upwind from the lake, and major element components were measured using X-ray fluorescence. According to the Besler classification, all samples are in the saline class. Also, the chemical index of alteration values in all samples were less than 50, indicating weak weathering. Based on multivariate statistical analysis, suitable tracers were selected and were imported to the sourcing equations. Quantification of uncertainty and the creation of two new fingerprinting models for aeolian sediments based on both Bayesian and GLUE procedures were used. The highest proportion comes from the salty and puffy lands (44.2%) followed by salty polygon land (23.5%), clay-salty areas, puffy-flaky lands (7.01%), the terminus of the fine sandy alluvial fan (13.2%) and clay-salty abandoned lands (12.1%). It is concluded that if land managers use these results, they can more efficiently decrease the hazards posed by dune formation, reactivation and migration through implementation of soil conservation on the affected lands around the dried lake.

Keywords: Aeolian hazard; Emerging geomorphological units; Sand provenance uncertainty; Mixing model (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05498-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05498-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05498-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05498-2