EconPapers    
Economics at your fingertips  
 

Interpretation of the reactivation of slow-moving landslides based on ring shear tests and monitoring

Tengfei Wang, Kunlong Yin, Yuanyao Li (), Zizheng Guo and Wei Wang
Additional contact information
Tengfei Wang: China University of Geosciences
Kunlong Yin: China University of Geosciences
Yuanyao Li: China University of Geosciences
Zizheng Guo: China University of Geosciences
Wei Wang: China University of Geosciences

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 3, No 25, 3013 pages

Abstract: Abstract Many landslides have been reactivated along the banks of the Three Gorges Reservoir (TGR) in China since 2003, many of which were slow-moving landslides. Normally, these landslides do not occur suddenly, but accelerations during short periods may occur, and they can still cause damage to buildings. The initiation of slow-moving landslides depends not only on the hydraulic characteristics of the sliding body, but also on the mechanical properties of the sliding zone soil. In this study, the Sifangbei landslide in the TGR was selected as a case study to analyse the residual strength of the sliding zone and the long-term monitoring data. The analysis of the long-term monitoring data indicated that the periodic landslide deformation reactivation was affected by seasonal rainfall and annual reservoir water-level fluctuations. Soil samples along the sliding zone collected from the front and middle of the landslide were tested using a ring shear test to study the influence of the water content and shear rate on the residual strength values. The results showed that an increase in water content can weaken the shear strength of sandy clay and clay. The sandy clay with fewer montmorillonite minerals and more sand particles had higher mechanical properties than the clay with more montmorillonite minerals and fewer sand particles. The damaging effect of the increased water content on the sandy clay was mostly reflected in the residual friction angle, while the damaging effect of the increased water content on the clay was mostly reflected in the residual cohesion. An increase in the shear rate had a positive effect on the shear strength of the sandy clay and clay. For the sandy clay with high particle friction, the shear mode changed from turbulent flow to slippage as large particles on the sliding surface broke into smaller particles when the shear rate reached a high speed (v ≥ 0.5 mm min −1). The shear strength under different scenarios revealed the mechanism of slow-moving landslide reactivation.

Keywords: Slow-moving landslide; Ring shear test; Water content; Shear rate; Three Gorges Reservoir (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05502-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05502-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05502-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05502-9