EconPapers    
Economics at your fingertips  
 

Dynamic monitoring of flood disaster based on remote sensing data cube

Zhicheng Wang () and Zhiqiang Gao ()
Additional contact information
Zhicheng Wang: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences
Zhiqiang Gao: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 3, No 31, 3123-3138

Abstract: Abstract High-frequency dynamic monitoring of flood disaster using remote sensing technology is crucial for accurate decision-making of disaster prevention and relief. However, the current trade-off between spatial and temporal resolution of remote sensing sensors limits their application in high-frequency dynamic monitoring of flood disaster. To deal with this challenge, in this study, we presented an approach to conduct high-frequency dynamic monitoring of flood disaster based on remote sensing data cube with high spatial and temporal resolution. The presented approach included two steps: a, removing the cloudy areas in original MODIS data to construct the cloud-free MODIS data cube by using the information provided by GPM rainfall data; b, fusing the cloud-free MODIS data cube and Landsat-8 data by using the spatiotemporal data fusion algorithm to construct the high spatiotemporal resolution (Landsat-like) data cube. The approach was tested by conducting high-frequency dynamic monitoring of flood disaster occurred in Henan Province, PR China. Our study had three main results: (1) the presented cloud removal algorithm in the first step was able to retain flood information and performed well in removing clouds during consecutive rainy days. The differences between cloud-free MODIS data cube and original MODIS data were small and the cloud-free MODIS data cube could be used for constructing high spatiotemporal resolution data cube. (2) Our presented approach could be used to conduct high-frequency dynamic monitoring of flood disaster. (3) Testing results showed that there were two floods occurred in the study area from July 17, 2021, to October 16, 2021; the first flood occurred from July 17, 2021, to September 15, 2021, with maximum affected area of 668.36 km2; the second flood occurred from September 18, 2021, to October 16, 2021, with maximum affected area of 303.88 km2. Our study provides a general approach for high-frequency monitoring of flood disaster.

Keywords: Flood disaster; Data cube; Remote sensing; Spatiotemporal data fusion algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05508-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05508-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05508-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05508-3