A first step towards a IoT-based local early warning system for an unsaturated slope in Norway
Luca Piciullo (),
Vittoria Capobianco and
Håkon Heyerdahl
Additional contact information
Luca Piciullo: Norwegian Geotechnical Institute
Vittoria Capobianco: Norwegian Geotechnical Institute
Håkon Heyerdahl: Norwegian Geotechnical Institute
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 3, No 42, 3377-3407
Abstract:
Abstract A framework for a IoT-based local landslide early warning system (Lo-LEWS) has been proposed. Monitoring, modelling, forecasting and warning represent the main phases of the proposed framework. In this study, the first two phases have been applied to capture the hydrological behaviour of a natural unsaturated slope located adjacent to a railway track in Eastern Norway. The slope is monitored and the stability is kept under frequent observation, due to its steepness and the presence of the railway lines at the toe. The commercial software GeoStudio SEEP was used to create and calibrate a model able to replicate the in situ monitored volumetric water content (VWC) and pore water pressure (PWP) regime. The simulations conducted were divided into two main series: one with an initial calibration of the VWC profile (C) and another with no calibration (NC). The simulations have been validated using Taylor diagrams, which graphically summarize how closely a pattern (or a set of patterns) matches observations. The results show that a preliminary calibration for matching the in situ VWC, as well as considering climate conditions and vegetation, are crucial aspects to model the response of the studied unsaturated slope. A sensitivity analysis on the hydraulic conductivity and the permeability anisotropy ratio contributed to better define the input data and to improve the best-fit model result. The effectiveness of the best simulation, in back-calculating VWC, was tested for 3 different time periods: 6-month, 1-year, 1.25-year. The results show that the hydrological model can adequately represent the real monitored conditions up to a 1-year period, a recalibration is needed afterward. In addition, a slope stability analysis with GeoStudio SLOPE for the 1-year period was coupled to the hydrological model. Finally, the calculated safety factor (FS), the temperature, the precipitation, the VWC and PWP monitored were used as input dataset for a supervised machine learning algorithm. A random forest model highlighted the importance of the monitored VWC for forecasting the FS. The findings presented in this paper can be seen as a first step towards an Internet of Things (IoT)-based real-time slope stability analysis that can be employed as Lo-LEWS.
Keywords: Monitoring; Modelling; Calibration; Validation; Taylor diagram; Machine learning; Landslide (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05524-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05524-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05524-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().