EconPapers    
Economics at your fingertips  
 

Numerical assessment of coastal multihazard vulnerability in Tokyo Bay

Fei Liu (), Jun Sasaki (), Jundong Chen () and Yulong Wang ()
Additional contact information
Fei Liu: Chongqing Jiaotong University
Jun Sasaki: The University of Tokyo
Jundong Chen: The University of Tokyo
Yulong Wang: The University of Tokyo

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 114, issue 3, No 51, 3597-3625

Abstract: Abstract Many bays worldwide are susceptible to coastal hazards such as storm surges, river floods, and tsunamis. Because most previous studies have focused on one or two of the above-mentioned hazards, in this study, we assess coastal vulnerability based on all three hazards. To accommodate the increase in the number of cases in multihazard analysis, an efficient method based on an estimated overflow volume without computing for inundation is proposed. Subsequently, the method is validated via a comparison with inundation simulation. It is shown that when the free overflow is dominant, the result yielded by the method is consistent with that of the inundation simulation. Using Tokyo Bay as the study area, an efficient method is applied to multihazard vulnerability assessment. By comparing the overflow volume maps and maximum anomaly distribution along the coast for four types of hazards, we investigate the characteristics of different types of hazards and identify the differences between single and multiple hazards. Furthermore, we compare the differences between superposing and concurrent computation methods for multiple hazards. It is discovered that the linear superposing method tends to overestimate the total water elevation in coastal regions; however, in the coast, where the superposing method underestimates multihazard anomalies, dike upgrades must be considered.

Keywords: Tsunamis; Storm surge; Overflows; Superposing and concurrent computation; Numerical simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05533-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05533-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05533-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05533-2