Risk assessment of dammed lakes in China based on Bayesian network
Zhenhan Du (),
Qiming Zhong (),
Shengyao Mei () and
Yibo Shan ()
Additional contact information
Zhenhan Du: Hohai University
Qiming Zhong: Nanjing Hydraulic Research Institute
Shengyao Mei: Nanjing Hydraulic Research Institute
Yibo Shan: Nanjing Hydraulic Research Institute
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 115, issue 1, No 5, 129-161
Abstract:
Abstract Scientific risk assessment of dammed lakes is vitally important for emergency response planning. In this study, based on the evolution process of the disaster chain, the logic topology structure of dammed lake risk was developed. Then, a quantitative risk assessment model of dammed lake using Bayesian network is developed, which includes three modules of dammed lake hazard evaluation, outburst flood routing simulation, and loss assessment. In the model, the network nodes of each module were quantified using statistical data, empirical model, logical inference, and Monte Carlo method. The failure probability of a dammed lake, and the losses of life and property were calculated. This can be multiplied to assess the risk a dammed lake imposes after the uniformization of each loss type. Based on the socio-economic development and longevity statistics of dammed lakes, a risk-level classification method for dammed lakes is proposed. The Baige dammed lake, which emerged in China in 2018, was chosen as a case study and a risk assessment was conducted. The obtained results showed that the comprehensive risk index of Baige dammed lake is 0.7339 under the condition without manual intervention, identifying it as the extra-high level according to the classification. These results are in accordance with the actual condition, which corroborates the reasonability of the proposed model. The model can quickly and quantitatively evaluate the overall risk of a dammed lake and provide a reference for decision-making in a rapid emergency response scenario.
Keywords: Dammed lake; Risk assessment; Failure probability; Flood loss; Risk level; Baige dammed lake (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05547-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05547-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05547-w
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().