EconPapers    
Economics at your fingertips  
 

Machine learning network suitable for accurate rapid seismic risk estimation of masonry building stocks

Onur Coskun () and Alper Aldemir ()
Additional contact information
Onur Coskun: Hacettepe University Beytepe
Alper Aldemir: Hacettepe University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 115, issue 1, No 10, 287 pages

Abstract: Abstract Most losses from earthquakes are associated with fully collapsed buildings. So, determining the seismic risk of buildings is essential for building occupants in active earthquake zones. Unfortunately, current methods used to estimate the risk state of large building stocks are insufficient for reliable, fast, and accurate decision-making. In addition, the risk classifications of buildings after major natural disasters depend entirely on the experience of the technical team of engineers. Therefore, the decision on risk distributions of building stocks before and after hazards requires more sustainable and accurate methods that include other means of technological advancement. In this study, the building characteristics dominating the seismic risk outcome were determined using a database of 543 masonry buildings. Later, for the first time in the literature, a new, fast and accurate seismic evaluation method is proposed. The proposed method is thoroughly associated with detailed evaluation results of structures with the help of machine learning algorithms. This study utilized an approach in which six machine learning algorithms work together (i.e., Logistic Regression, Decision Tree, Random Forest, K-Mean Clustering, Support Vector Machine, and Ensemble Learning Method). As a result of the analysis of these algorithms, the correct prediction rates for the learning database (i.e., 434 buildings) and the test database (i.e., 109 buildings) of the proposed method were determined as approximately 96.67% and 95%, respectively. Lastly, machine learning algorithms trained by structures with known after seismic risk results are developed. The proposed method managed to classify risk states with the accuracy of 84.6%.

Keywords: Seismic risk estimations; Masonry structures; Machine learning; Seismic risk classification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05553-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05553-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05553-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05553-y