EconPapers    
Economics at your fingertips  
 

Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat

Kai Cui () and Xiaotong Qin
Additional contact information
Kai Cui: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology)
Xiaotong Qin: Southwest Jiaotong University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 115, issue 3, No 25, 2399-2416

Abstract: Abstract In recent years, with the global warming, the unfrozen water content of permafrost slope increases year by year. The decrease of slope stability is a great threat to the engineering construction in permafrost area. In this study, the south piedmont slope of Bayan Kara Mountain is taken as the research object. Through the field water and temperature monitoring of different positions and depths of the slope, the seasonal and interannual water change characteristics of the slope were analyzed. Combined with indoor shear strength test, numerical simulation and monitoring data, the moisture, temperature and stability of frozen soil slope in spring thawing period were analyzed. The analysis results show that: Water content and freeze–thaw cycles have great influence on the shear strength parameters at the interface. The slope moisture change in the region is divided into four stages, the water decline stage, the low water content stage, the water rise stage and the high water content stage. The freeze–thaw cycle and precipitation are the main reasons for the water change in each stage. From the middle of May to the middle of June is the high risk period of slope instability. The spring thaw landslide is dominated by shallow surface landslide, and the sliding surface is shallow.

Keywords: Seasonally frozen soil; Moisture-heat coupled model; Moisture characteristics; Stability of frozen soil slope; Strength on freeze–thaw interface (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05646-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05646-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05646-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05646-8