EconPapers    
Economics at your fingertips  
 

Land use land cover representation through supervised machine learning methods: sensitivity on simulation of urban thunderstorms in the east coast of India

Kumari Priya, Talukdar Sasanka and Krishna K. Osuri ()
Additional contact information
Kumari Priya: National Institute of Technology Rourkela
Talukdar Sasanka: National Institute of Technology Rourkela
Krishna K. Osuri: National Institute of Technology Rourkela

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 116, issue 1, No 13, 295-317

Abstract: Abstract This study assesses the sensitivity of Land Use Land Cover (LULC) representation on the evolution of mesoscale convective systems over Bhubaneswar, a rapidly growing city (~ 77% growth in the last two decades) in India. In this study, three types of LULC maps have been prepared using supervised machine learning (ML) methods such as Classification and Regression Trees (CART), Naive Bayes (NB), and Support Vector Machine (SVM) on Google Earth Engine (GEE) platform using Landsat 8 for 2014. A high accuracy score (87%) and kappa coefficient (84%) revealed the best performance of CART in generating the LULC map. The Weather Research and Forecasting (WRF) model at 6 and 2 km horizontal resolution is forced with these LULC maps. Model results highlight that the CART experiment exhibits relatively less bias in 2 m relative humidity (~ – 10% to – 5%), 2 m temperature (~ 2.5 °C to ~ 0 °C), and 10 m wind speed (– 1 to ~ 1.8 m s−1) up to peak stage of the thunderstorms. The CART performs better with less rainfall error (~ – 16 mm) than CNTL (~ – 33 mm), NB (~ – 37 mm), and SVM (~ – 38 mm) and is supported by the quantitative statistical analysis, viz. less false alarm ratio, critical success index for different thresholds. LULC class-wise analysis indicates a higher variation in surface and lower atmospheric parameters over urban, shrubland, and cropland while less variation over barren, forest, and water. Thus, the study highlights the credibility of ML models in representing LULC information to input the high-resolution models.

Keywords: Land Use Land Cover; Machine learning; WRF model; Urban thunderstorms; Indian region (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05674-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05674-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05674-4

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05674-4