Application of novel hybrid machine learning techniques for particle Froude number estimation in sewer pipes
Sanjit Kumar,
Bablu Kirar,
Mayank Agarwal and
Vishal Deshpande ()
Additional contact information
Sanjit Kumar: Indian Institute of Technology Patna
Bablu Kirar: Samrat Ashok Technological Institute
Mayank Agarwal: Indian Institute of Technology Patna
Vishal Deshpande: Indian Institute of Technology Patna
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 116, issue 2, No 19, 1823-1842
Abstract:
Abstract The hydraulic capacity of the channel is significantly impacted by the deposition of sediment in sewers and urban drainage systems. Sediment deposition affects a channel's hydraulic capacity in urban drainage and sewage systems. To decrease the effects of this continuous deposition of silt particles, sewer systems frequently have a self-cleaning device to keep the channel bottom clear from sedimentation. Therefore, accurate particle Froude number (Fr) prediction is essential for sewage system design. This study looked at three datasets from the literature that covered a wide range of volumetric sediment concentration (Cv), dimensionless grain size of particles (Dgr), sediment median size (d), hydraulic radius (R), and pipe friction factor for the condition of non-deposition without deposited bed. We employed Kstar, M5P, and random forest (RF) models as standalone models as well as additive regression (AR) models as hybrid machine learning (ML) models for the prediction of Fr. In all, we looked at six ML methods: Kstar, AR-Kstar, M5P, AR-M5P, RF, and AR-RF. Several performance metrics, including mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), root-mean-square error (RMSE), Pearson correlation coefficient (R), etc., have been used to assess the performance of suggested models. In comparison to standalone ML models and empirical equations, hybrid ML models perform better. For the prediction of particle Froude number (Fr) in sewage system design under the condition of non-deposition without deposited bed, AR-Kstar (MAE = 0.435, NSE = 0.922, and RMSE = 0.623, and R2 = 0.923) performed the best, followed by AR-RF, Kstar, RF, AR-M5P, and M5P.
Keywords: Froude number; Deposited bed; Standalone model; Hybrid model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05786-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05786-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05786-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().