Earthquake response of embankment resting on liquefiable soil with different mitigation models
Abhijit Chakraborty () and
V. A. Sawant ()
Additional contact information
Abhijit Chakraborty: Indian Institute of Technology Roorkee
V. A. Sawant: Indian Institute of Technology Roorkee
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 116, issue 3, No 13, 3093-3117
Abstract:
Abstract Three different liquefaction mitigation techniques for an earthen embankment resting on saturated loose cohesionless soil have been compared in the present study as densification of foundation soil, stone column mitigation, and hybrid pile-stone column mitigation. Numerical modelling has been done using finite element modelling assuming plane strain condition. Liquefaction behaviour of the foundation soil has been modelled using the effective stress-based elasto-plastic UBC3D-PLM model. All the three mitigation models along with the benchmark model have been analysed under 25 different real ground motions. The maximum embankment crest settlement has been occurred in the Imperial Valley (1979) ground motion having the maximum Arias Intensity. The maximum crest settlement and the maximum excess pore pressure ratio in the mitigation zone below embankment toe found to be increasing with Arias Intensity of ground motions. In case of mitigation using densification of region below the embankment toe, the mitigated zone away from the toe towards the free field liquefies. The stone column mitigation reduces the excess pore pressure more efficiently beneath the embankment toe region than other two mitigation techniques. The hybrid mitigation with a combination of gravel drainage and pile found to be more effective to reduce the excess pore pressure as well as the shear-induced and post-shaking settlement due to the rapid dissipation of excess pore pressure of the foundation soil.
Keywords: Earth embankment; Densification; Stone column; Hybrid mitigation; Numerical modelling; Embankment crest settlement (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05799-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-022-05799-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-022-05799-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().