Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia
Muhammad Taufiq Rafie,
David P. Sahara (),
Phil R. Cummins,
Wahyu Triyoso and
Sri Widiyantoro
Additional contact information
Muhammad Taufiq Rafie: Institut Teknologi Bandung
David P. Sahara: Institut Teknologi Bandung
Phil R. Cummins: Institut Teknologi Bandung
Wahyu Triyoso: Institut Teknologi Bandung
Sri Widiyantoro: Institut Teknologi Bandung
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 116, issue 3, No 25, 3425 pages
Abstract:
Abstract The seismically active Sumatra subduction zone has generated some of the largest earthquakes in the instrumental record, and both historical accounts and paleogeodetic coral studies suggest these were large enough to transfer stress to the surrounding region, including the Great Sumatran Fault (GSF). Therefore, evaluating the stress transfer from these large subduction earthquakes could delineate segments of elevated stress along the GSF where large earthquakes may potentially occur. In this study, we investigated eight megathrust earthquakes from 1797 to 2010 and resolved the accumulated Coulomb stress changes onto 18 segments along the GSF. Additionally, we also estimated the rate of tectonic stress on the GSF segments which experienced large earthquakes. We considered two cases, with: (1) no forearc sliver movement, and (2) the forearc sliver movement suggested by recent studies. Based on the historical stress changes of large earthquakes and the increase in tectonic stress rate, we analyzed the time evolution of stress changes on the GSF. The Coulomb stress changes on the GSF due to megathrust earthquakes between 1797 and 1907 increased the Coulomb stress mainly on the southern part of GSF, which was followed by four major GSF events during 1890–1943. The estimation of tectonic stress rates using case (1) produces a low rate of stress accumulation and long recurrence intervals, which would imply that megathrust earthquakes play an important role in promoting the occurrence of GSF earthquakes. When implementing the arc-parallel sliver movement of case (2), the tectonic stress rates are much higher than case (1), with an observed slip rate of 15–16 mm/yr at the GSF consistent with a recurrence interval for full-segment rupture of 100–200 years. The case (2) result suggests that the occurrence of GSF earthquakes is dominantly controlled by the rapid arc-parallel forearc sliver motion. Furthermore, the analysis of the evolution of stress changes with time shows that some segments such as Tripa (North and South), Angkola, Musi and Manna, which have experienced full-segment rupture and are therefore likely locked, appear to have returned to stress levels similar to those prior to previous historical events, suggesting elevated earthquake hazard along these GSF segments.
Keywords: Coulomb stress changes; Forearc sliver; Oblique subduction; Great Sumatran fault; Megathrust earthquakes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-05816-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05816-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-023-05816-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().