EconPapers    
Economics at your fingertips  
 

Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination

Hamid Reza Pourghasemi (), Soheila Pouyan, Mojgan Bordbar, Foroogh Golkar and John J. Clague
Additional contact information
Hamid Reza Pourghasemi: Shiraz University
Soheila Pouyan: Shiraz University
Mojgan Bordbar: Islamic Azad University
Foroogh Golkar: Shiraz University
John J. Clague: Simon Fraser University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 116, issue 3, No 43, 3797-3816

Abstract: Abstract Protection against natural hazards (i.e., floods, landslides, forest fires, and earthquakes) is vital in land-use planning, especially in high-risk areas. Multi-hazard susceptibility maps can be used by land-use manager to guide urban development, to minimize the risk of natural disasters. The objective of the present study was to use four machine learning models to produce multi-hazard susceptibility maps in Khuzestan Province, Iran. In this work, four different natural hazards (flood, landslides, forest fire, and earthquake) using support vector machine (SVM), boosted regression tree (BRT), random forest (RF), and maximum entropy (MaxEnt) techniques were created. Effective factors used in the study include elevation, slope degree, slope aspect, rainfall, temperature, lithology, land use, normalized difference vegetation index (NDVI), wind exposition index (WEI), topographic wetness index (TWI), plan curvature, drainage density, distance from roads, distance from rivers, and distance from villages. The spatial earthquake hazard in the study area was derived from a peak ground acceleration (PGA) susceptibility map. The second step in the study was to combine the model-generated maps of the four hazards in a reliable multi-hazard map. The mean decrease Gini (MDG) method was used to determine the level of importance of each effective factor on the occurrence of landslides, floods, and forest fires. Finally, “area under the curve” (AUC) values were calculated to validate the forest fire, flood, and landslide susceptibility maps and to compare the predictive capability of the machine learning models. The RF model yielded the highest AUC values for the forest fire, flood, and landslide susceptibility maps, specifically, 0.81, 0.85, and 0.94, respectively.

Keywords: Multi-hazards; Land-use planning; Hazard management; Machine learning methods (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-05836-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05836-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-05836-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05836-y