EconPapers    
Economics at your fingertips  
 

Hydromechanical coupling mechanism and an early warning method for paraglacial debris flows triggered by infiltration: Insights from field monitoring in Tianmo gully, Tibetan Plateau

Zongji Yang (), Bo Pang, Wufan Dong, Dehua Li and Wei Shao
Additional contact information
Zongji Yang: Chinese Academy of Sciences
Bo Pang: Chinese Academy of Sciences
Wufan Dong: Chinese Academy of Sciences
Dehua Li: Chinese Academy of Sciences
Wei Shao: Nanjing University of Information Science and Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 117, issue 3, No 47, 3287-3305

Abstract: Abstract Deglaciation has intensified in alpine regions with climate warming, causing increasingly intense paraglacial debris flows (PDFs). Examining the hydromechanical mechanism and initiation of PDFs is essential to disaster relief in downstream areas. However, the establishment of source initiation of PDFs and early warning criteria are hampered by a lack of in situ observations of PDFs; therefore, providing a PDF early warning is still challenging. In this study, on the basis of long-time series field monitoring of rainfall, temperature, soil moisture, and surface displacement in the Tianmo gully, southeast of the Tibetan Plateau, the initiation mechanism of PDFs and the evolutions of the effective saturation, matrix suction, and suction stress were analyzed by combining the hydromechanical coupling analysis method of a slope for a long-term sequence. The measured evidence for the formation and evolution process of slope stability in PDF source area was provided under the conditions of precipitation and ablation. Furthermore, through the inversion of the key slope stability parameters, the thresholds of the hydraulic factors for the provenance slope failure were established, which could be used for early warning of PDFs. This study provides theoretical reference and long-time field data for monitoring and early warning of PDFs in paraglacial hazard-prone areas under global warming sequences.

Keywords: Paraglacial debris flow; Hydrological mechanism; Multivariate thresholds; Early warning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-05987-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05987-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-05987-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05987-y