EconPapers    
Economics at your fingertips  
 

A data-driven analysis and optimization of the impact of prescribed fire programs on wildfire risk in different regions of the USA

Esther Jose, Puneet Agarwal () and Jun Zhuang ()
Additional contact information
Esther Jose: University at Buffalo
Puneet Agarwal: California Polytechnic State University
Jun Zhuang: University at Buffalo

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 118, issue 1, No 7, 207 pages

Abstract: Abstract In the current century, wildfires have shown an increasing trend, causing a huge amount of direct and indirect losses in society. Different methods and efforts have been employed to reduce the frequency and intensity of the damages, one of which is implementing prescribed fires. Previous works have established that prescribed fires are effective at reducing the damage caused by wildfires. However, the actual impact of prescribed fire programs is dependent on factors such as where and when prescribed fires are conducted. In this paper, we propose a novel data-driven model studying the impact of prescribed fire as a mitigation technique for wildfires to minimize the total costs and losses. This is applied to states in the USA to perform a comparative analysis of the impact of prescribed fires from 2003 to 2017 and to identify the optimal scale of the impactful prescribed fire programs using least-cost optimization. The fifty US states are classified into categories based on impact and risk levels. Measures that could be taken to improve different prescribed fire programs are discussed. Our results show that California and Oregon are the only severe-risk US states to conduct prescribed fire programs that are impactful at reducing wildfire risks, while other southeastern states such as Florida maintain fire-healthy ecosystems with very extensive prescribed fire programs. Our study suggests that states that have impactful prescribed fire programs (like California) should increase their scale of operation, while states that burn prescribed fires with no impact (like Nevada) should change the way prescribed burning is planned and conducted.

Keywords: Decision analysis; Wildfires; Prescribed fire; Fuel management; Least-cost optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-05997-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-05997-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-05997-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-05997-w